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A numerical method for studying one-dimensional electron plasma evolution under typical 
interplanetary conditions is presented. The method uses the Fourier-Fourier transform 
approach to a plasma model which is a generalization of the electrostatic Vlasov-Poisson 
system of equations. Conservation laws which are modified to include the plasma model 
generalization and also the boundary effects of nonperiodic solutions are given. A new conser- 
vation law for entropy in the transformed space is introduced. These conservation laws are 
used to check the accuracy of the numerical solutions. A discretization error analysis is given. 
Two numerical instabilities and the methods used for their suppression are discussed. Several 
solution examples are presented. Two of these are comparisons with earlier independent 
results; the comparison is favorable. A third example is also discussed which uses an inter- 
planetary observation of a bump-on-tail unstable velocity distribution as initial data. It is 
shown that in interplanetary plasma conditions the bump-on-tail instability leads to significant 
excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An 
explanation of the second harmonic excitation in terms of wave-wave coupling during the 
growth phase of the instability is given. 

I. INTRODUCTION 

The ISEE spacecraft [ I] have stimulated a detailed examination of the complicated 
plasma phenomena occurring in the region of space in front of the Earth’s bow shock 
called the foreshock [2]. Of particular interest here are the energetic electrons which 
propagate upstream in the solar wind flow, from the bow shock into the foreshock 
region, along interplanetary magnetic field [3]. These electrons lead to significant 
heating of the plasma in the foreshock region as well as to the generation of intense 
electrostatic turbulence. From direct electron and electric field measurements it has 
been found that the electrostatic plasma behavior is largely one dimensional with the 
magnetic field providing the direction in space for this dimension. 

In this paper a numerical method for modeling the one-dimensional electron 
plasma behavior in the foreshock region is presented. This method is based on a 
plasma model which is a generalization of the electrostatic Vlasov-Poisson system of 
equations. The Vlasov-Poisson system does not determine the evolution of the space 
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average of the electric field which may play an important role in the foreshock. The 
equation due to Maxwell which contains his displacement current is added to the 
Vlasov-Poisson system in order to complete the plasma description. A detailed 
discussion of this issue is given by Klimas and Cooper [4]. 

The plasma equations are Fourier-Fourier transformed both in the position and the 
velocity variables following the technique introduced by Knorr [5]. The result is 
further reduced using a transformation of dependent variables introduced by 
Klimas [6] to obtain a semi-linear system of hyperbolic partial differential equations 
in the normal form [7]. Except for an additional term due to the inclusion of 
nonperiodic solutions, this system of equations is identical to that obtained by Knorr. 
However, the dependent variables are not the characteristic functions of the electron 
distribution function as they are in the Knorr equations; they are related to the 
characteristic functions through the transformation given by Klimas. The conser- 
vation laws for the plasma given by Knorr must be modified for the generalized 
plasma model considered here. For solutions periodic in the position variable the 
total number of particles in the region of periodicity is still conserved but the total 
particle momentum is not. The total energy of the plasma is modified due to the 
presence of the space-averaged electric field. The necessary modifications of these 
conservation laws are presented here. Since the method presented here is not limited 
to periodic solutions, further modifications of the conservation laws for nonperiodic 
solutions are also given. 

An additional conservation law for entropy which has not been considered before 
in attempts to integrate the Knorr equations is introduced here. This is an important 
consideration for checking the accuracy of these numerical solutions. The conser- 
vation laws mentioned in the previous paragraph follow from a moment expansion of 
the electron distribution function which translates into a power series expansion 
about the origin of the Fourier variable complimentary to velocity in the 
Fourier-Fourier transformed space. Those conservation laws can be used to test the 
accuracy of the solution only at the origin of the Fourier variable; they are local 
conservation laws. A calculation of the entropy in the transformed space requires 
integration over the Fourier variable and summation over the modes. For entropy 
conservation the solution must remain accurate over all of the transformed space for 
all of the modes. The local conservation laws and the entropy conservation law 
together provide a much more rigorous test for the accuracy of the solution than 
either alone. The numerical calculations which are presented in this paper have been 
monitored to ensure the satisfaction of both types of conservation laws. 

The Knorr equations have been discussed in several papers and various methods 
have been used to integrate them numerically [8-121. The method of integration used 
here is closely related to that used by Denavit [9] and by Denavit and Kruer [lo] 
with several modifications which were judged necessary to make the solutions useful 
in space physics applications. A higher order discretization scheme is used. An 
analysis is given which shows that the discretization error is formally fifth order in 
the grid spacing but nonuniformly so over the grid. A method for handling the 
nonuniformity is discussed. The difference equations are implicit; they require a 
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matrix inversion to march forward on the grid. The matrix inversion is carried out 
iteratively on a grid with fixed spacing. The number of iterations done at each grid is 
varied in such a way as to allow a larger grid spacing over all the grid. The boundary 
of the grid is varied so that the solution is calculated only where it is effectively 
nonzero. Conversely, regions of the grid where the solutions is’ nonzero are not 
discarded. Two numerical instabilities have been discovered. The sources of these 
instabilities are discussed and methods for their removal are presented. The result is a 
numerical code for integrating the Knorr equations which is almost certainly slower 
than that used, for example, by Denavit and Kruer but which 
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II. DISCRETIZED EQUATIONS 

The plasma model under consideration here has been discussed by Klimas [6]. He 
has shown that the problem of finding the time evolution of the 1-D electron plasma 
can be reduced to finding solutions of his Eq. (13) which is reproduced here using 
slightly modified notation. 

K,(v, 7) = K,(v - M7,O) + j; &7,(v - m(7 - A), A) 

+I,’ dl[v - m(7 -A)] A,,“(A) K,(v - m(r - A>, 1) 

in which 

‘4 m,&> = Kn-,(O, 7) 

m-n ’ 
(?n#n,Im-nI<~), 

(1) 

(2) 
= 0, (otherwise), 

and a summation on the index n, from n = -M to n = A4, is implied. Equation (1) 
governs the evolution of the 2h4 + 1 (--M < m < M) Fourier-Fourier modes, K,(v, t), 
for --co <v< co and 720. 

The plasma model is subject to initial and boundary value data. The K,(v, 0) in 
Eq. (1) can be computed from the initial plasma data and the u,(v, r) follow from the 
boundary value data. Thus, Eq. (1) is to be studied as an initial value problem with 
the K,,,(v, 0) and o,(v, 7) given. For solutions with periodic boundary data 
um(v, 7) = 0. 

When 0, = 0, Eq. (1) is essentially identical to an equation given by Knorr [S, 
Eq. (40)] for the electron distribution characteristic functions in the electrostatic 
approximation under the assumption that the space average of the electric field is 
zero for all time. It is a rather remarkable fact that the plasma model under 
consideration here can be reduced to the system of equations derived by Knorr even 
though the space average of the electric field is here determined by an additional 
equaton of Maxwell and is not set arbitrarily to zero. The only difference which 
remains is that the K’s is Eq. (1) are not the characteristic functions and, therefore, a 
physical interpretation of the solution of Eq. (1) must be appropriately modified. It 
would be incorrect to assume that in the foreshock region, just in front of the earth’s 
bow shock, the space average of the electric field is zero. This assumption would be 
particularly inconsistent when nonperiodic solutions are considered. Thus, the 
application intended here makes the generalized plasma model necessary. 

The initial plasma data will be assumed a “good function” [2 1 ] of velocity. Then, 
each of the K,(v, 0) are good functions of v; i.e., each of the K,(v, 0) is everywhere 
differentiable any number of times and it and all its derivatives are O(] v] -“) as 
]v] -+ co for all N. In this case it is always possible, for numerical purposes, to treat 
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the K,(v, 0) as functions of v with compact support. In the following, truncated 
approximations to the K,(v, 0) will be used which are zero for ] Y] > A, where A is 
chosen large enough to reduce the error which is made in this truncation to an accep- 
table level. Then, the domain of influence on the (v, r)-plane of the initial data is as 
pictured in Fig. 1. Outside the domain of influence, K,(v, r) = 0 for all r > 0. The 
expansion of the domain of influence in v, with increasing r, is the analogue in this 
space of the possibility of velocity space filamentation [22]. As larger values of v are 
reached, finer structures in the velocity distribution become possible. This numerical 
calculation is carried out on the domain of influence of the initial data with the 
following possible exception: It has been found that occasionally the K,(v, r) do not 
expand in v with increasing r at the rate allowed. To take advantage of this possibility 
the K,(v, r) are periodically checked to see if a new domain of influence can be 
defined and truncated approximations to the K,(v, t) introduced, as at r = 0, with a 
new A(r) chosen on the same basis of tolerable degree of error. Thus, the calculation 
may actually be carried out on a domain shown schematically by the dashed lines in 
Fig. 1. Notice that when this kind of evolution does occur, then strong velocity space 
filamentation is impossible. 

In preparation for obtaining discrete approximations to its solutions, Eq. (1) can be 
used to find 

K,(v, r) = K,(v - 2mAr, r - 2‘42) + j’ da& - m(r -A), n> 
t-2Ar 

dl[v - m(r - A)] A,,,(A) K,(v - m(r - A), A>, (3) 

I 
T 

DOMAIN OF INFLUENCE 

FIG. 1. The K,(v, t) are calculated forward in r from r = 0 on the domain bounded by the solid 
lines or, when possible, on the domain bounded by the dashed lines. 
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where dr is the grid spacing which will be used in the following. The finite difference 
equation which is used here is obtained by substituting a 3-point (Simpson’s rule) 
evaluation of the last integral in Eq. (3). On a square grid, with v = irdt and r = Jdz, 
the result of this substitution can be written (using vector notation) as, 

[I - &IA(J)] . h(4 J) = I#, J), (4) 

in which the vector component h, (Z, J) is the discrete approximation to the mode 
K m-M-l(v, t), now with 1 < m < 2M + 1. In this equation E = {(4r)*. 

A,,,(J) = 

h m--n+M+ ,(O, J> 

m-n ' (m+n,Im-nI<M, l<m,n<2M+ l), 
(5) 

= 0, (otherwise), 

and 

g,(Z, J) = h,(Z - 2(m - A4 - I), J - 2) + S,(Z, J) 

+&[4(Z-(m-M- l))C,(Z-((m-M- l),J- 1) 

+(I-2(m-M- l))C,(Z-2(m-M- l),J-2)], 

in which 

and 

(6) 

(7) 

With this formulation, the problem of finding a numerical approximation to the 
solutions of nonlinear Eq. (1) is reduced to the essentially linear matrix inversion. 

h(Z, J) = [I - &IA(J)] --I . g(Z, J). (9) 

Given h(Z, J- 1) and h(Z, J- 2), g(Z, J) can be calculated. From Eq. (4), 

h(O,J) = g(O, J) (10) 

and, from Eq. (5), A(J) can be calculated. Equation (4) can be treated as a linear 
equation for h(Z, J) with Eq. (9) for its solution. Thus, the numerical solution at two 
time steps can be used to compute a third time step. A two-point evaluation of the 
integral in Eq. 3 is used to get the calculation started. 

581/50/Z-7 
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III. DISCRETIZATION ERROR AND MATRIX INVERSION 

The discretization error involved in approximating Eq. (3) by Eq. (4) is formally 
O(dr’). However, because the linear power of v appears under the integral sign in 
Eq. (3), this formal ordering is nonuniform in v (or the index, I). Consider that 
contribution to the integral given by 

d.A,,,(A) K,(v - m(t - A), A) 
(11) 

= I ‘= dAQ,(v, L A>, 
-AT 

where 

Q,(v, r, A) = VA m,,, (t-dr+1)K,(v-m(dr-A),7-A65+~). (14 

With the assumption of the good initial data, and with reasonable restrictions on the 
u,,,(v, r), it can be shown [23] that the K,(v, r) have the four derivatives (the effects of 
truncation at the edge of the domain of influence will be discussed shortly) necessary 
to carry out the standard error analysis as follows: Let I,Jv, r) = Sm(v, r) + E,(v, t), 
where S,(v, r) is the three-point approximation to Eq. (11) given by 

Sm(v,r)= (43)[Q,(v,r,dr) + 4Q,(v, 790) + Q,<v, 7, -Ar)l; (13) 

then [24] 

L(v, ~11 & (G/9WW5 (14) 

if 

I Q:‘<v, 5, n>l Q G (-As < 1< Ar), (1% 

in which the (4) indicates the fourth derivative with respect to L. Unfortunately, 

Qt4)(v, t, ,I) = [vA(7 - At + A)] 5 . K(v - m(At - ,I), z -At + A). 

Although in typical applications the elements of the matrix A are usually no larger 
than 10e3 to lo-‘, the discretization error can get arbitrarily large as ]v] increases. 
Given the tendency of the domain of influence to expand with increasing r, values of 
v large enough to make the discretization error unacceptable are encountered. To 
circumvent this problem, at each time step in the calculation the maximum eigenvalue 
of A, h,,,,, is computed and the quantity v,,, A&,,,, where vmax detines the 
expanding boundary of the domain of influence, is monitored. A constant C is defined 
so that is fifth power is equal to the error which is tolerated in the matrix inversion of 
Eq. (9). (The matrix inversion will be discussed shortly.) The grid spacing is chosen 
so that initially v,,, A&,,,, < C. If at some time step v,,, Av&,,, > C, the calculation 
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is stopped, the grid spacing is halved, data is computed to fill the new grid positions 
using an interpolation scheme, and the calculation is restarted. This chain of events is 
most likely to be encountered in calculations of plasma instabilities in which the 
rapidly rising electric field strengths lead to a rapid increase of A,,,,, with increasing r. 
Although no filamentation has been encountered in this Fourier transformed space, 
the increase of vmsX, and the possible increase of A,,,,,, with increasing r, still often 
require shifts to finer grids as the calculation proceeds. This phenomenon will be 
discussed further in Section VI in relation to the individual examples of solutions that 
are presented there. 

In view of the fact that v,,, du&,,,, is always maintained small compared to one it 
becomes advantageous to use an iterative scheme for calculating the matrix inversion 
in Eq. (9). This iterative evaluation of the matrix inversion is the discrete analogue of 
the iterative approximation scheme dicussed by Klimas [6]. 

A sequence if iterates to h(Z, .Z) is calculated with h(Z, f; 0) = g(Z, J) and with the 
a’th iterate computed according to 

h(Z, J; a) = h(Z, J; 0) + eZA(.Z) . h(Z, J; a - 

Thus, 

h(Z,J;a)= 2 [&IA(J)]” -g(Z,J) 
n=O 

and 

lilim h(Z, J; a) = [I - &IA(J)] - ’ * g(Z, J). 

(16) 

(17) 

(18) 

With the introduction of an eigenbasis for the matrix A, it is easy to see that the rate 
of convergence of the summation in Eq. (17) is controlled by I,,,. The maximum 
number of iterations at each grid point amsx is precalculated so that [sZ&,,,,]“mBX < e,, 
where e, is the error mentioned above in the discussion surrounding the choice of C. 
Notice that the convergence rate of this iterative scheme is nonuniform over the grid 
and that, therefore, a,,, must increase with increasing 1. 

The overall method presented above for integrating the Knorr equations is similar 
to that used Denavit [9] and by Denavit and Kruer [lo], but with several 
modifications. They used a first-order discretization and chose to iterate just once 
while adjusting the grid size at each time step to make the first iterate sufficiently 
accurate. They handled the nonuniformity in the iteration convergence rate mentioned 
above by choosing their step size small enough so that the first iterate is sufficiently 
accurate in the worst case when Y = v,,, (q = qmax in their notation). In the method 
presented here a higher order discretization on a fixed grid, with a variable number of 
iterations over the grid, is used. The interpolation associated with the variable grid is 
avoided, advantage is taken of the more rapid iteration convergence available over 
most of the grid interior, and the larger grid spacing which is consequently possible is 
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used. Finally, the variation of urnax with increasing time (index J) which is included 
here avoids serious truncation error in the solution when it does expand to fill the 
domain of influence of the initial data and, conversely, provides maximum efficiency 
when the solution does not expand. The solution is computed only where it is effec- 
tively nonzero and at the same time grid regions where the solution is nonzero are not 
arbitrarily discarded. Only in this way could the entropy conservation law, which is 
discussed in the following section, be satisfied. 

IV. CONSERVATION LAWS 

There are several conservation laws which are considered important for modeling 
the behavior of an electrostatic plasma. These have been presented by Knorr [5] in 
terms of the characteristic functions for the electrostatic electron distribution 
function. The conservation laws which apply to the plasma model under 
consideration here are generalizations of the Knorr results due both to the generalized 
plasma model and the inclusion of nonperiodic solutions. Nevertheless, these physical 
conservation laws, for particle number, momentum, and total plasma energy can be 
reduced to forms which are identical to those given by Knorr (for periodic solutions) 
but for quantities which are no longer physical. These reduced forms are given here. 
In addition, a reduced form for entropy conservation is also given. These reduced 
conservation laws are used to check the accuracy of the numerical solutions. 

A. Particle Number 

The total number of electrons in the region of configuration space under 
consideration is given by 1y,(O, r). For the fixed ion density model considered here 
K,(O, r) must be maintained constant to ensure the overall neutrality of the plasma. 
Thus, the boundary conditions which are applied must incorporate a,,(O, z) = 0. The 
discrete approximation to K,(O, r) is given by h,,,, ,(O, J). From Eqs. (4)-(g) with 
a,(O, r) = 0, it can be shown that h,,, (0, J) = h,, ,(O, J - 2). Thus, total particle 
number is conserved by the disciete equations. 

B. Total Momentum 

In contrast to the case for the electrostatic plasma, the total particle momentum is 
not conserved. Instead, it satisfies [6, Eq. (1 l)]. In order for that equation to hold, 
however, the relationship, 

(19) 

where the primes signify differentiation with respect to v, must hold. This is the 
reduced momentum conservation law; for periodic solutions (u,, = 0) it is identical in 
form to that given by Knorr [5] for the physical momentum, however, the charac- 
teristic function has been replaced by K,. The value of KA(O, t) is monitored to 
ensure approximate conservation of reduced momentum according to Eq. (19). 
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C. Total Energy 

The conservation law for total energy in the plasma is given by [6, Eq. (26)]. That 
equation can be reduced to 

dT(s)/dr = o;(O, z), (20) 

where 

T(r)= 5’ K$ ‘) 
I I 

2 

PI-M 

in which the prime on the summation indicates that the term in the sum 
corresponding to n = 0 is not included. Equations 20 and 21 give the reduced energy 
conservation law. Again the conservation law is similar to that given by Knorr [5] 
but the conserved quantity is not the physical energy. The quantity T(t) is monitored 
to ensure the approximate conservation of reduced energy. 

D. Entropy 

Because the Km are closely related to the Fourier-Fourier transform of a real 
function, K$(v, r) = K-,(-v, r), in which the star denotes complex conjugation. With 
the use of this symmetry, and Eqs. (1) and (2), it can be shown that the entropy, 

H(r)= jm dv 5 IKm12 
-cc m=-M 

satisfies 

(22) 

(23) 

In the periodic plasma, for which u = 0, the entropy is a constant. Otherwise, 
transport of entropy across the boundaries of the configuration space, as specified by 
the boundary conditions, leads to changes of the entropy given by Eq. (23). 

Notice that these conservation laws for the entropy and the reduced momentum 
and energy provide a complimentary pair of tests for the accuracy of the numerical 
integration as it proceeds. The reduced momentum and energy provide for a local test 
in the vicinity of v = 0 and the entropy is global requiring integration over all v and 
summation over all modes at each time step. It has been found through experience 
that the presence of numerical instabilities is very quickly reflected in the failure of at 
least one of these conservation laws. The entropy test has proven particularly useful 
for detecting problems in the vicinity of the boundary of the domain of influence near 
v = vmax. This issue will be explained fully in the next section where the numerical 
instabilities which have been encountered are discussed. 
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V. NUMERICAL INSTABILITIES 

Two numerical instabilities have been encountered in the implementation of the 
integration scheme discussed above. The first of these is apparently caused by the 
truncation of the domain of influence at v = v,,, ; it is not inherent to the integration 
scheme itself. A brief description of this instability and its removal is given here. The 
second instability is more fundamental to this integration scheme. This instability and 
a method for removing it are the main subjects of this section. 

A. Instability at v,,, 

The analysis of the discretization error which is presented in Section III shows that 
there is a tendency for that error to grow with increasing v. The domain on which this 
numerical integration is done is truncated in v in order to maintain this error at a 
tolerably low level. Unfortinately, the process of truncation introduces a discontinuity 
in the solution at v = v,,, which is beyond the scope of the discretization error 
analysis which assumes smooth solutions. It has been found that, for solutions where 
V max approaches the maximum allowed before a halving of the grid spacing is 
required, a weak saw tooth-like wave sometimes appears in the numerical solution as 
a function of v near v = v,,,. Apparently the truncation process excites this 
waveform. The wavelength of this disturbance is always very small and thus it is easy 
to detect superimposed on the relatively slow variations of the undisturbed solution. 
This clear separation of wavelengths also makes it possible to smooth the numerical 
solution in the vicinity of v = v,,, in order to prevent the propagation of the saw 
tooth instability into the interior of the domain of influence where it tends to grow 
rapidly. 

B. Instability at v = 0 

A second numerical instability has been encountered which is apparently excited 
only when the electric field modes are very small; it has never been detected 
otherwise. The excitation of this instability can be readily understood through the use 
of a linear approximation to Eqs. (4~(8) which is appropriate when the field modes 
are small. 

In the following, for convenience, the notation K,(Z, J) = hm+M+ i(Z, J) will be used 
for the discrete approximations to the K,(v, r), with the index m in the range 
-M Q m <M. Only periodic solutions will be considered. As explained in 
Section IVa, K,(O, J) = 1. When I is near zero, &(I, J) is generally not very small 
compared to one. If the electric tield modes are very small compared to one, however, 
then the K,(Z,J) (m # 0) are generally comparably small for all I. The linear 
equations mentioned above are obtained by dropping all terms in Eqs. (4)-(8) that 
are higher order than linear in the K,,,(Z, J) for m # 0. The linear equations are, 

&,,(I, J) = &(I - 2m, J - 2) + (e/m)[lK,(O, J) &(L J) 
+4(1-m)K,(O,J- l)K,(I-m,J- 1) 

+(I-2m)K,(O,J-2)K,(I-2m,J-2)) (24) 
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for m # 0, and 

&(I, J) = &(I, J - 2). (25) 

For simplicity consider a limited domain in Z near Z = 0 and in this domain let 
K,(Z, J) = 1. Then, with the introduction of D,(Z, J) = K,(Z, J) - K,(Z - 2m, J), and 
by considering Eq. (24) at I= 0 and I# 0, the following two equations can be 
constructed: 

D,(Z, J) = D,(Z - 2m, J - 2) 

+~E[K,(O,J)+~K,(O,J- l)+K,(O,J-2)] (26) 

and 

K,(O, J) = K,(O, J - 2) - D,(O, J - 2) 

-2&[2K,(O,J- l)+K,(O,J-2)]. (27) 

Now, suppose K,(O, J- 2) > 0 and K,(O, J - 1) < 0 but both are comparable in 
magnitude, and also suppose D,(O, J- 2) < 0 and small (i.e., gradients are finite and 
grid spacing is small). Then, from Eq. (27), K,(O, J) > K,(O, J- 2) by a small 
amount and, from Eq. (26), D,(Z,J) < D,,,(Z- 2m, J- 2) by a small amount. If, on 
the other hand, K&O, J - 2) < 0 and K,(O, J - 1) > 0 with comparable magnitudes 
and D,(O, J - 2) > 0 but small, then K,(O, J) < K,(O, J - 2) by a small amount and 
D,(Z, J) > D,(Z- 2m, J- 2) by a small amount. Thus, once this pattern is 
established, it must grow in amplitude so long as K,(Z, J) remains slowly varying 
with Z and the linearized equations are appropriate. 

An example of this instability after it has grown very large is presented in Figs. 2a 
and b. In these figures a single mode is plotted over a limited range of v about u = 0 
for two successive time (J) steps. Notice the large jump in amplitude and slope at 
v = 0 as predicted above. When this instability was encountered it was found to grow 
exponentially with a growth rate that was large enough to make it a serious problem. 

In the Appendix a successful method for removing this instability is presented. The 
method is based on the assumption that K,(Z + ml, J) = G,(Z, J) + (-l)JB,(Z, J), 
where G,(Z, J) and B,(Z, J) are smooth functions of Z and J. It is a characteristic of 
the general numerical marching routine being presented here that the K,(Z, J) are 
available for no more than two J values at any given integration step. In the 
Appendix it is shown that if the G,(Z, J) and B,(Z, J) are assumed second-order 
polynomials in dr, then the K,(Z, J) at two values of J are sufftcient to individually 
determine the G,(Z, J) and B,(Z, J) for the two J values. Removal of the instability is 
accomplished by simply replacing the K,(Z + mJ, J) by the G,(Z, J) whenever the 
B,(Z,J) are large enough to warrant doing so. 
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FIG. 2. A single mode at two successive time steps after the growth to very large amplitudes of the 
numerical instability discussed in Section Vb. 

VI. RESULTS 

The results to be presented here follow from considerations of three different 
initial plasma conditions. The first two of these have been considered before by 
Cheng and Knorr [ 131 and by many others before them who are referenced in their 
paper. No attempt will be made here to discuss the earlier results; those of Cheng and 
Knorr are the latest and are calculated using a numerical technique far removed from 
that used here. The third case presented here is based on actual electron observations 
in the earth’s foreshock region. More details of the observation will be given shortly. 
The purpose of presenting this case is to demonstrate an application to the inter- 
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planetary plasma parameter regime. All three of these examples have periodic 
boundary conditions for which o,(v, r) = 0. In each case M = 4; nine field modes 
(including the space-averaged component) are included. This was the maximum 
number of modes considered during the development stage of this work. However, 
there is no inherent limitation to such a small number of modes in the computational 
method nor in the numerical code as it is written. In physical applications, especially 
those including nonperiodic solutions, larger numbers of modes will be included. In 
the last example presented here, where new physical phenomena have been 
discovered, the number of modes and the placement of the modes in wavelength have 
been varied to ensure that the results are not an artifact of the small number of 
modes. 

The electric field is an important measurable property of the electrostatic plasma. 
It will be presented in terms of its Fourier series expansion, 

E(x, 7) = E,(t) + T [a,(r) cos(m7rx) + b,(z) sin(mrcx)] 
m=l 

= E,(r) + $ 

(28) 

[A m z cos mn(x + p) + B,(r) sin mrc(x + q)], ( > 
m=l 

in which E,(r) is the space average of the electric field that Klimas [6] has shown 
can be calculated a priori: 

E,(z) = E,(O) cos(r) t (L/A,) u,(O) sin(z), (29) 

where E,(O) is an arbitrary constant which must be chosen as part of the initial data 
and where 

u,(o)=-+J$ . (30) 
v=O,r=O 

The coefficients in the Fourier series expansion are related to the solution of K,(v, r) 
through b,(r) = B,(r) cos mx&r) - A,(r) sin m@(r) and a,(r) = A,(r) cos m@(r) + 
B,(t) sin mx#(t) in which 

(3 l-a) 

and 

B,,,(z) = -(y/m) Re K,(O, 7). (3 l-b) 

Here y = 2L/7d,, 

q(r) = 2 1; dqr - A) E,(A), (32) 

L is an arbitrary length scale over which the dimensional position variable x is 
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measured, and 1, is the Debye length. The actual Fourier coefficients are a time 
dependent superposition of A,(t) and B,(t) which depends on the constants E,(O) 
and u,(O). In order to avoid the extra degree of freedom involved in the choice of the 
constant E,(O), the results for the electric field will be presented here in terms of the 
A,(r) and B,(r). In the special case when E,(O) = u,(O) = 0, then E,(r) = 0 and the 
electric field given by Eq. (28) reduces to the electrostatic approximation. In this case 
solutions of the generalized electron plasma model considered here can be compared 
directly with other solutions of the electrostatic Vlasov-Poisson system. In the first 
two examples to follow, E,(O) has been set to zero as part of the initial data and 
initial velocity distributions are chosen which are symmetric in velocity; therefore 
u,(O) = 0. 

A. Nonlinear Landau Damping 

In this case, in terms of the dimensionless variables used by Klimas [6], the initial 
velocity distribution is given by 

F(x, u, 0) = &G(l - cos rrx) exp[- 4(2~u)*]. 

After the Fourier-Fourier transformation, the initial data are given by K,(v, 0) = 
exp[- f(v/2)*], K,(v, 0) = K-,(v, 0) = - ~K,(Y, 0), and all other K,(v, 0) = 0. 
Because of the symmetry of the initial data in v, u,(O) = 0. If E,(O) is assumed equal 
to zero, the system of equations considered by Klimas [6] reduces to that considered 
by Cheng and Knorr [13] and since the initial data for their “strong nonlinear 
Landau damping” example is identical to that used here, the results can be compared 
directly. 

Figures 3a-d should be compared to Fig 4 of Cheng and Knorr. Notice that there 
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FIG. 3. Nonlinear Landau damping: the absolute values of the electric field Fourier coefficients as 
functions of r. I f  a coefficient reaches 1, then the field energy density in that mode is equal to the initial 
thermal energy of the electron plasma. 



J 

r 

EL
EC

TR
IC

 
FI

EL
D 

no
DE

 
M

iX
IT

UD
ES

 



286 ALEXANDER .I. KLIMAS 

is a constant scaling factor of two in going from the E, of Cheng and Knorr to the 
B, in Figures 3a-d. The results for the dominant first mode are in excellent 
agreement and even the smaller second mode results contain only minor differences. 
The third mode results are only qualitatively similar, but the third mode is also very 
small contribution to the total electric field. 

In their Fig. 5, Cheng and Knorr have plotted the space-averaged velocity 
distribution at various instants in time. With the Fourier-Fourier transform approach 
taken here the velocity distribution, of course, is not directly available. However, a 
fast Fourier transform routine has been applied to K,(v, r) to invert the Fourier 
transformation in velocity space and thereby obtain the space-averaged velocity 
distribution for comparison with Cheng and Knorr. Some results of this inversion are 
given in Figs. 4a and b for two times which are also presented by Cheng and Knorr. 

4.0 

$ 
TAU =35.00 

3.5 M =o 
r 

VELOCITY 

-1.0’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.B 1.0 

VELOCITY 

FIG. 4. Nonlinear Landau damping: the space average of the electron velocity distribution at two 
instants in time. Slight negative excursions are errors due to the truncation of the Fourier series 
expansion of the electron distribution function at a finite number. 
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The comparison at r = 35 is excellent with only minor differences in the results in 
the low amplitude, large velocity tails on the distribution. The comparison for all 
earlier times is equally good or better. Considering the vastly different types of 
approaches which have been taken to obtain this comparison, the excellent agreement 
which is obtained has to be taken as a verification of both approaches. 

.The comparison at r = 40 is not quite as good. The velocity-space filamentation 
which has been developing up to this time seems to largely vanish in the results of 
Cheng and Knorr but it does not vanish at all in the results obtained here. Perhaps 
the recurrence effect in the method of Cheng and Knorr is responsible, but this is 
only a guess. There does not seem to be any reason to expect the tilamentation to 
vanish after it has formed. 

Figures 5 and 6 show the development of K-,(v, r) for this Landau damping case. 
Figure 5 is characteristic of damping evolution. The entropy density in the mode 
propogates away from the line v = 0 along the characteristic direction of the mode (in 
this case v = v,, - 4~) leaving the amplitude of the mode at u = 0 smaller with 
increasing r. Figure 6 shows the same mode at a later time. The dominant feature in 
this figure is still the large amplitude wave train propagating along the characteristic 
direction. This propagation along the characteristics to large v-values allows for fine 
structure in the corresponding velocity distribution; i.e., velocity filamentation. Thus, 
Landau damping should be expected to lead to severe velocity-space tilamentation. 
The reversal of the decay of the electric field modes which is evident in Fig. 3a-d is 

due to the growth of the very regular waves in the vicinity of and to the right of v = 0 
in Fig. 6. Because of the growth of these waves and the simultaneous spreading of the 
solution to large v values, this case became very difficult to calculate. From r E 15 to 
the end of the run both rmax and A,,,,, grew with increasing r leading to four halvings 

FIG. 5. Nonlinear Landau damping: real part of K-,(v, r) for small r showing initial damping stage. 
Notice that r increases from “back to front” of drawing; m = -4 mode, M = 4. 
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FIG. 6. Nonlinear Landau damping: real part of K-,(u, r) for r much larger than in Fig. 5 showing 
damping reversal; m = -4 mode, M = 4. 

of the grid spacing. The combination of the grid spacing halvings plus the overall 
growth of the size of the domain on which the calculation was being done made 
further progress impractical. The difficulty is due directly to the entropy conservation 
requirement. If this requirement were relaxed, then the very large Y,,, and the related 
grid spacing halvings would not be required but the accuracy of the resulting solution 
would be in question. 

B. Two-Stream Instability 

The second comparison with the results of Cheng and Knorr which is presented 
here shows the evolution of a two-stream instability. In this case the initial velocity 
distribution is given by 

F(x, 0, 0) = &G( 1 - .05 cos xx)(2nu)* exp[- 5(2nu)‘]. 
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The initial data for the Fourier-Fourier transformed variables is given by 

&(v, 0) = [ 1 - (v/2)*] exp[- f(v/2)‘1, 

K,(v, 0) = K-,(v, 0) = -.025K,(v, O), 

and all other K&v, 0) = 0. 
The electric field mode amplitudes are plotted in Figs. 7a-d; they should be 

compared with the results of Cheng and Knorr for these quantities in their Fig. 6. 
Again, a quantitative comparison of the results for the dominant first mode indicates 
excellent agreement. The higher modes are in excellent agreement only for short times 
and agree only qualitatively for longer times. Perhaps the differences in detail that do 
exist are due to the small number of modes that are included in the results here. 

Figures 8 and 9 are included to show the very different kind of evolution which 
occurs during the growth and saturation of an instability such as this one. In Fig. 8 
notice the increase in amplitude which occurs in the vicinity of v = 0 as r increases. 
This increase must take place to accommodate the exponential growth of the electric 
field which derives from the value of the mode at v = 0. Since the entropy is 
conserved, this rapid growth of all of the modes in the vicinity of v = 0 seems to 
preclude propagation away from v = 0. Indeed, in Fig. 9 the same mode is shown 
over an interval of r when saturation of the instability has already taken place. Notice 
that the solution has not spread significantly in v beyond that which occurred much 
earlier and that there is no evidence for further spreading. In this case there does not 
seem to be a basis for significant velocity-space filamentation because the solution is 
negligibly small at large values of v for all modes. In fact, the space-averaged velocity 
distribution shown in Fig. 10 for r = 40 shows very little evidence of filamentation. 
Cheng and Knorr made the same observation in their discussion of this two-beam 
instability. Because there was no significant spreading in this solution, the calculation 
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FIG. 7. Two-beam instability: same as Fig. 3. 
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T’ 

FIG. 8. Two-beam instability: real part of K,(v, r) for small 5 showing initial growth of instability; 
m=-2 mode.M=4. 

went quickly with only one halving of the grid spacing. The run was stopped when 
essential agreement with the results of Cheng and Knorr had been demonstrated; in 
contrast with the Landau damping example discussed above, there was no reason for 
not continuing if it were desired. Within the Fourier-Fourier transform technique, as 
higher modes are added the potential for more rapid spreading of the solution is 
increased. However, for this two-stream instability it was found that the spreading 
was essentially unaffected by the number of modes included. Thus, an extension of 
this calculation to many more modes seems promising. 

C. Bump-on-tail Instability 

The dots in Fig. 11 represent GSFC electron spectrometer data taken aboard the 
ISEE- spececraft on November 6, 1977, at 11:38:13 UT when the spacecraft was 
experiencing strong electrostatic turbulence in the foreshock region of the Earth’s bow 
shock. The solid curve is a three-Gaussian tit to the data which was used for the 
initial velocity distribution for the numerical integration to be presented in this 

581/50/2-a 
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T’ 

I-’ 45 

T 

FIG. 9. Two-beam instability: real part of K-,(v, 5) showing saturation of the instability; m = -2 
mode, M = 4. 

section. All modes were given the same initial velocity distribution but the amplitudes 
of the modes with m # 0 were set at lO-‘j of the amplitude of the mode with m = 0. 
Here E,(t) cannot be assumed zero because u,(O), which is determined by the initial 
data, is not zero. Thus, this example cannot be calculated in the electrostatic approx- 
imation using the Vlasov-Poisson system of equations. The nonsymmetric nature of 
the observed electron data makes the reduction to that approximation impossible. The 
full expression given by Eq. (28) must be used to calculate the electric field, and the 
conservation laws for reduced momentum and energy are no longer for physical 
quantities. For the results to be discussed in this section the change in reduced 
momentum was approximately 0.05% of the original, the change in reduced energy 
0.3% of the original, and for entropy, 0.04% of the original. 

The thin vertical lines in Fig. 11 represent the initial phase velocities of the electric 
field modes. Analysis of a linearized version of the equations being considered here 
indicates that the mode with phase velocity which lies on that part of the “bump” on 
the initial velocity distribution with positive slope should be unstable; i.e., while it, 
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FIG. lo. Two-beam instability: the space average of the electron velocity distribution function 
following saturation of the instability. Note the persistence of the two beams and the lack of strong 
velocity space Blamentation. 

and all the other modes, oscillate harmonically at their respective Bohm-Gross 
frequencies, its amplitude should grow exponentially in time with a growth rate than 
can be predicted. According to this analysis the amplitudes of all other modes in this 
example should decay exponentially with various rates. 

Figures 12a-d contain the B,‘s for this run. The A,% will not be presented since 
they are qualitatively the same as the B,‘s. The second mode, B*(t), is the mode 
which is expected to grow exponentially; it does initially with a growth rate close to 
that predicted by the linear analysis. The remaining modes decay initially as 
expected. The reversal of the decay of B4(r) with an increase in its oscillation 
frequency by roughly a factor of two was not expected. This is the first time that this 
phenomenon has been found in a calculation of the bump-on-tail plasma instability. 
The number of modes in this calculation as well as their placement in phase velocity 

-13 -10 -5 0 5 IO 
VELOCITY /IO8 CM SEC-’ 

FIG. 11. Bump-on-tail instability: tit (solid curve) to ISEE- electron spectrometer data (dots) used 
for initial condition. Uncertainty in the data is indicated by spread in dots. 
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d 

FIGURE 12 (continued) 

has been varied to ensure the correctness of this result. Standard tests like halving the 
grid spacing or varying parameters which govern the number of iterations, and 
therefore the accuracy of the solution, were applied with no change in the results. 
Oscillations in the electric field at twice the plasma frequency have been observed 
aboard the ISEE- spacecraft but, for theoretical reasons, have been assumed either 
experimental error or electromagnetic in origin. On the other hand, there is no 
experimental evidence at present that these oscillations are electromagnetic and there 
is growing evidence that the harmonic detections are real [25]. 

Figures 13a-f give an indication of the time evolution of the space average of the 
velocity distribution function late in the numerical run. At r = 170 the distribution is 
still essentially the initial distribution. As the growing electric field modes approach 
saturation, the dip in the velocity distribution between the central Gaussian and the 
bump begins to fill in. At r N 210, when the electric field reaches its first maximum, 
the bump has been reduced to a plateau with some weak velocity space filamentation 
superimposed. However, later whenever the field strength reduces, the bump 
reappears. This phenomenon may be due to the small number of modes included in 
the calculation but tests of this conjecture have not been conclusive. For example, a 
run was made in which only three field modes were included but the integration went 
to t ?? 1000. In that case the oscillatory reappearance of the bump was initially 
stronger but the oscillations decayed away by r N 500. When a larger number of 
modes have been included the oscillations have been found initially weaker but they 
have shown no tendency to decay away. The weak velocity space tilamentation in the 
vicinity of the bump may also be due to the small number of modes. But, no tendency 
for these waves to disappear with an increase in the number of modes has been found. 
Confirmation of the reality of these waves must await further computations with 
more modes included and/or a calculation by an independent investigator using the 
same initial conditions. 
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FIG. 13. Bump-on-tail instability: the space average of the electron velocity distribution functions as 
the instability saturates. Note the reappearance of the bump after the overshoot in the dominant electric 
mode shown in Fig. 12b. 
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Figures 14 and 15 are plots of the contrasting early evolution of the real parts of 
K,(v, t) and K-,(v, r). Both modes contain a wave train propagating away from the 
origin along their respective characteristic directions in a manner similar to the 
earlier Landau damping example. Both modes also contain a string of pulsations in 
the vicinity of v = 0. But, for m = -4 these pulsations decay as 5 increases, thereby 
leading to the initial decay phase of B4(r) (and Ad(t) as well). These pulsations in 
K-,(v, r) grow with increasing r but, interestingly, nothing else happens. At 
saturation, shown in Fig. 16, K_,(v, r) still contains the same string of pulsations 
near v = 0 with the same shape and frequency but with a much larger amplitude. The 
growth of this remarkably stable waveform is responsible for the exponential rise in 

B,W (and 4W h s own in Fig. 12b. Figure 17 contains a plot of K-,(v, T) over a 

FIG. 14. Bump-on-tail instability: real part of K-,(v, r) for small r showing initial growth of 
pulsation near v = 0; m = -2 mode, M = 4. 
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time interval just after the reversal of the decay of B4(r) (and Ad(r)). The wave train 
characteristic of Landau damping continues to propagate away from the v = 0 line 
along this mode’s characteristic direction but the growth of some small regular waves 
in the vicinity of v = 0 is evident. These waves are responsible for the decay reversal. 
Notice the strong similarity between the behavior of this mode with the behavior of 
K-,(v, t) shown in Figs. 5 and 6 for the Landau damping example. 

The mechanism for the excitation of the second harmonic oscillations is relatively 
easy to understand. It appears that this mechanism may operate in many situations in 
interplanetary plasmas. The critical elements of this mechanism are the initial low 

FIG. 15. Bump-on-tail instability: real part of K-,(v, r) for small r showing initial decay of 
pulsations near v  = 0; m = -4 mode, M = 4. 
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T’ 

FIG. 16. Bump-on-tail instability: real part of K,(v, r) for large r showing details of pulsations near 
v  = 0 after saturation of the instability; m = -2 mode, M = 4. 

level of the field modes before the excitation of the instability plus the small growth 
rate of the instability. Then the linear growth phase of the instability lasts long 
enough for the amplitudes of the growing mode(s) and the decaying modes to move 
so far apart that the linear plasma theory, which would not allow the second 
harmonic excitation, becomes misordered. Quadratic terms in the growing field 
modes actually dominate over linear terms in the decaying modes. A form of second- 
order wave-wave coupling 1261 takes over which allows the unstable modes to pump 
the decaying modes. The pumped mode must grow with twice the growth rate and it 
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FIG. 17. Bump-on-tail instability: real part of Km,(v, r) showing the reversal of the decay of this 
mode at v=O, m=-4 mode,M=4. 

must oscillate with twice the oscillation frequency of the unstable mode. These are 
properties of B4(r) following the reversal of its linear decay when compared to the 
unstable B*(r). Notice that, at r N- 70, just as the growth B,,(r) begins its amplitude is 
comparable to the square of the amplitude of B2(r). Further numerical runs which are 
being carried out as this is being written show that higher harmonics are also excited 
through this mechanism. A quantitative study of this mechanism is in progress and 
will appear later. 
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VII. CONCLUSION 

A numerical method for modeling one-dimensional electron plasma behavior under 
typical interplanetary plasma conditions has been presented. The method is based on 
the Fourier-Fourier transform technique applied to a plasma model which is a 
generalization of the electrostatic plasma equations; the evolution of a nonzero space- 
averaged electric field is included. A construction of the discretized equations has 
been given along with a brief discussion of the associated discretization error. It has 
been shown that this error is formally fifth order in the grid spacing but this ordering 
has also been shown to be nonuniform over the grid. A method for controlling this 
nonuniformity has been introduced. This method allows for a larger grid spacing than 
was possible in earlier approaches to the nonuniformity problem. Several conser- 
vation laws which are used to test the accuracy of the numerical integration have 
been discussed. Three of these have been shown to be closely related to conservation 
laws in the electrostatic limit, An additional conservation law for entropy has been 
included. Two numerical instabilities have been identified and methods for their 
suppression have been presented. 

Three examples of plasma evolution have been presented. The first two of these 
have been compared to the earlier results of Cheng and Knorr [ 131 who used an 
entirely different method to obtain them. The comparison verifies the results of Cheng 
and Knorr and establishes the accuracy of the method presented here. The third 
example that has been presented demonstrates an application to an ISEE electron 
observation made in the Earth’s foreshock. The results of this example are quite 
surprising. It has been found that during the linear growth phase of this bump-on-tail 
instability, one of the stable modes become pumped through a quadratic wave-wave 
interaction with the dominant unstable mode. The pumped mode shifts its oscillation 
frequency to twice the Bohm-Gross frequency of the unstable mode. Following 
saturation the electric field is dominated by plasma oscillations at the basic 
Bohm-Gross frequency of the unstable mode and its second harmonic. This kind of 
behavior has not been associated before with bump-on-tail evolution. An explanation 
for the second harmonic excitation has been given which shows that its occurrence is 
due to the interplanetary plasma state used for the initial conditions in the numerical 
integration. It has been shown that second and higher harmonic excitation may be a 
common occurrence in interplanetary plasma. These results have led to a reex- 
amination of several assumptions which have been made concerning the ISEE data. 
This reexamination is in progress; conclusions will be presented elsewhere. 

In the future, solutions with nonperiodic boundary conditions will be studied by 
including CJ(V, r) f 0. In the third example that has been presented here, the evolution 
of a bump-on-tail instability has been examined, given that the bump on the velocity 
distribution has been found to exist. Of further physical importance is an answer to 
the question “How did the bump get generated in the first place?” Nonperiodic 
boundary conditions must be added in order to approach thus question. 
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APPENDIX 

In Section Vb it was shown that Eqs. 4-8 are unstable when the electric field 
modes are very small and the K,(I, J) mode is slowly varying with I. Some results of 
allowing this instability to grow unchecked were also presented there. The results in 
Section VI for the bump-on-tail (physical) instability were obtained only after the 
growth of this numerical instability was prevented. In this appendix the method used 
for preventing that growth is presented. 

Consider Eqs. (4)-(8) with the change of notation given by K,(I, J) = hm+,,,+ i(1, J) 
with -M < m < M. Suppose the K,(I, J) are known for two successive values of J 
which will be arbitrarily labeled here as J= 0 and J= 1. Let F,(I, J) = 
K,(I + mJ, J). Then, from Eqs. (4)-(8), 

F,(Z, 2) = FJI, 0) t (e/(m - n))[(Z t 2m) P,-,(-2(m - n), 2) F,(I t 2(m - n), 2) 

t 4(1 t m) F,-,(-(m - n), 1) F,(I + (m - n), 1) 

+ IF,-"(0, 0) F,(L (91 (Al) 

in which the sum over n with n # m and 1 IZ 1 Q M is implied. Now assume that the 
F,(I, J) are a mixture of good plus bad data given by F,(Z, J) = 
G,(Z, J) t (-l)JB,(I, J) with 

G,(L 4 = G,(I) t (J-~T) a,#) t (J~T)~P,(I> 642) 

and 

B,(L J) = B,(I) + (Jdr) Y,(Z) t (J@* h,,(Z) 643) 

The G,(I, J) are the components of the instability-free solution to Eq. (Al) which is 
to be found. Thus, the G,(I, J) must be the solution of Eq. (Al) with the B,(I, J) = 0. 
Bu substituting Eq. (A2) into Eq. (Al) and then equating coefficients of equal powers 
of AT, the a,(Z) and j?,(1) can be calculated in terms of the G,(I). This substitution 
must be carried out with care, however, because of the explicit appearance in 
Eq. (Al) of the index I which takes on large values of O(Ar-‘) on the domain of this 
calculation. Thus, over this domain &I = fv AZ must be treated as O(As). With this 
proviso the calculation is straightforward and yields, 

a,(I) = L 6 
( ) 
2 Pm-A--2(m - n)) G,V + 2(m - 0 

+ 4Gd-(m - 4) W + (m - 4) + G,-,(O) W>l 644) 
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and 

[G,-,(-WI - n)) a# + 2(m - n)) 

+ a,-,(-2(m - n)) G,(Z + 2(m - n)) 

+ 2G,-.(-(m - n)) a,# + (m - n)) + 2a,-,(-(m - n)) G,,(Z + (m - n)>l 

[G,-,)-2(m - n)) G,(Z + 2(m - n)) 

+ 2G,-,(-@I - n)) G,(Z + (m - n))]. WI 

The B,(Z,J) will be assumed small compared to the G,(Z,J) for all values of m. 
Thus, a linearized version of Eq. (Al) can be constructed in which all terms 
containing powers of the B,(Z, J) higher than first are neglected. Then, a calculation 
for the B,(Z, .Z) similar to the one described above for the G,(Z, .Z), but this time using 
this linearized equation, can be carried out to relate the y,(Z) and 6,(Z) to the G,(Z) 
and B,(Z). The results are, 

and 

Y,(Z) = h’(m - n>W,-.(-2(m - n)) B,(Z + 2@ - n)) 
+ B,-,(-2(m - n)) G,(Z + 2(m - n)) 

- 4G,-,(-(m - n)) B,,(Z + (m - n)) 

- 4B,-,,(-@I - n)) G,(Z + tm - n)> 

+ G,-,(O) B,(Z) + B,-,(O) G,(Z)1 

S,(Z) = $/(m - n))[a,-,(-qm - n)) B,(Z + 2(m - n)) 
+ G,-,(-2(m - n)) y,(Z + 2(m - n)) 

+ y,,,-,(-2(m - n)) G,(f + Wn - n)> 
+ B,-,(-2(m - n)) a# + 2(m - n)) 

- 2a,-,(-(m - n)) B,(Z + (m - n)) 

- 2’3,~A-(m - n)) Y,V + (m - n)) 
- &,,-,(-Cm - n)) G,U + tm - n)) 
- 2B,-,(-(m - n)) a,(1 + (m - n>>] 

+ $n/(m - n))[G,-,(-2(m - n))B,,(Z + 2(m -n)) 

+ B,-,(-2(m - n)) G,(Z + 2(m - n)) 
- 2G,-,(-@I - n)) B,(Z + (m - n)) 

- 2B,-,(-(m - n)) G,tZ + tm - n)>l 

(A61 

(A7) 
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Thus, with this approach it is possible to construct an expression for F,(Z,J) which 
has only two independent vector quantities, G,(Z) and B,(Z), for each value of the 
index I. It is further possible to calculate the G,(Z) and B,(Z) in terms of the F,(Z, 0) 
and F,(Z, 1) which are known. This calculation is outlined in the following: 

When J = 0, 

&,(L 0) = G,,,(Z) + B,,,(Z) G-48) 

and when J= 1, 

JW9 1) = G,(Z) - 4,AZ) + Wb,P) - ~~(01 
+ @~mmv) - 4nm1. (A% 

A solution of this pair of equations for G,(Z) and B,(Z) correct to O(dr*) can be 
constructed using an iterative process. Let G$‘(Z) and B:‘(Z) be the solutions of 
Eqs. (A8) and (A9) with dt = 0. The zeroth iterate, which is correct to O(dr’), is 
given in this manner by 

GE’(Z) = 4 [K,(Z, 0) + K,(Z + m, l)], 

B:‘(Z) = + [K,(Z, 0) - K,(Z + m, I)]. 
(AlO) 

With these expressions, zeroth iterates to a,(Z), p,(Z), y,(Z), and S,(Z) can be 
calculated by replacing G,(Z) and B,(Z) in Eqs. (A4)-(A7) with G:‘(Z) and B:‘(Z) 
respectively. The first iterate to G,,,(Z) and B,(Z), correct to O(dt), can be calculated 
from Eqs. (AS) and (A9) by ignoring the term that is O(dr*) and replacing a,(Z) and 
y,(Z) with their zeroth iterates. The result, which is correct to O(dr), is 

G:‘(Z) = G:‘(Z) - $lt(a!,f’(Z) - y:‘(Z)], 

B:‘(Z) = II:’ + fAt[a/j’(Z) - yC’(Z)]. 
(All) 

This process can be continued until the second iterate, correct to O(&*), 

G:‘(Z) = GE’(Z) - fdt(a!j’(Z) - y:‘(Z)] - +@?)*[/?$‘)(I) - SE’(Z)], 

B:‘(Z) = B:‘(Z) + &lt[a~‘(Z) - y:‘(Z)] + f(dt)*[/l~‘(Z) - SE’(Z)] 
6412) 

is obtained. At this point, the G,(Z, J) and B,(Z, J) can be calculated individually to 
O(dt*). The process of filtering the numerical instability out of the solutions is just 
that of replacing the F,(Z, J) by the G,(Z, J) in the two J-steps available. 
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